
Installing and Configuring LDDTool
A local data dictionary is a set of schema files that define a namespace that is under the control of
someone other than the PDS4 managers. It includes the PDS discipline dictionaries for things like
display orientation and geometry, as well as node- and mission-specific dictionaries. There are web-
based and GUI-based tools in development at various places to help users who prefer to do
dictionary development in a web/GUI environment - ask your friendly, neighborhood PDS node
consultant what's currently available if that's what you are looking for. These pages are for the roll-
your-own crowd that either prefers or has no choice but to work at the command line and see how
the sausage is made.

Caveat Usor
Be advised: There is a fair amount of hands-on setup work required to get the LDDTool working in
your local environment the way you want it to. And because this tool is updated for each new model
release and to accommodate the sometimes complex needs of the discipline dictionaries still in
development, you may well have to repeat this process with some variations with each new release.
We'll try to keep this page updated to reflect the latest version of the tool. Feel free to add additional
information about LDDTool versions or OS versions not specifically mentioned here.

Goal
Our goal in this set of pages is to start with the LDDTool installation package and end up with the
tool installed for general use on the target system. "General use" in this case means you can invoke
the tool in any directory where you happen to be working with a command line that looks something
like this:

 % lddtool -lp <input_file>

Part List
To run the LDDTool locally, you'll need the following:
• The LDDTool package. The package is available as either a ZIP file or a compressed TAR file

from the PDS4 Software page, https://pds.nasa.gov/pds4/software/index.shtml. Either format will
do.

• Java 1.7 or later. Type "java -version" at your command line to see what version of Java, if any,
you have available. If you don't have Java installed, or want to work with a later version, you'll
usually need administrator privileges on your computer to download and install a newer version
from the Oracle web site https://java.com/download. Java 1.7 and later includes a handy feature
that will help with configuration later on, so if you are still running an older version, you now have
one more reason to upgrade.

• A text editor that can handle simple text files for batch processing without filling them up with
control characters. On linux-based systems, things like vi, pico, or gedit will work; from the
Windows DOS command line, you can use the edit command on older systems (pre-Windows7),
or Notepad (which can be invoked from the Windows command line as notepad) on newer ones.

• An XML editor, while optional, will make editing the output schema files easier, and you'll
probably want one for creating the input file anyway. A schema-aware editor like Eclipse (open
source) or oXygen (commercial) can be handy for one-off file creation and editing. For the minor
fix-up editing needed in the LDDTool output schemas, though, you can use the same simple text
editor you used to edit the batch file or command wrapper.

https://pds.nasa.gov/pds4/software/index.shtml
https://java.com/download

General Procedure
Here's the general procedure for setting up the tool:

1. Unzip the LDDTool package.
2. Move the directories you actually need to run the tool to a permanent location.
3. Edit the wrapper script for the local environment.
4. Install the wrapper script.
5. Test the installation with the supplied sample files.
6. Rejoice in the knowledge of a job well done.

Procedure
Unzip the LDDTool Package
Use any standard ZIP tool (unzip on linux-based systems; the Extract All option in Windows Explorer)
to extract the files from the ZIP package. For the tar file, use the z option to uncompress while you
extract. You should end up with a directory with a name that starts with lddtool- and ends with the
version number of the tool. As of this writing, the latest version of the tool is 8.0.0, so the delivery
package unpacks into a directory called lddtool-8.0.0. On a Windows system, by default this
directory will be underneath a directory with the same name as the ZIP package, less the ".zip"
extension. You can unpack it anywhere - we'll move the stuff we need to a new home once we've
picked one out. If you haven't inspected previous LDDTool delivery packages, you should probably
take a few minutes to familiarize yourself with the contents.

Here's what you'll find in the unpacked directory:

Executables
The executable elements of the package include:

bin/
You'll actually only need one of the files from this directory, but you'll have to carry the directory
along nonetheless. We'll be modifying one of these scripts to work on your local system, and then
installing just that modified file into an LDDTool-specific bin/ directory.
The runapp/ subdirectory contains some batch files that, depending on your system, could be used
to run the tool on some of the example input files provided.
Data/
At least one of these files is referenced directly by the LDDTool java code, so it needs to be present.
lib/
This directory contains only the DMDocument.jar jar file, which contains the actual Java code.

Documentation
The doc subdirectory contains an HTML directory tree. Point your browser to the index.html file to
see it in its intended format. There are brief summary instructions for installation and usage in the
nominal case.

Examples
This directory contains sets of input/output files produced by LDDTool. They are undocumented, but
at least if you run the usual lddtool -lp command on the IngestLDDTool_*.xml you should get output

similar to the file set here. We'll use one of these for testing the installation. Apart from that, they may
be useful examples for how to code some of the more specific, more complex behaviour found in the
more intricate discipline dictionaries.

Peanuts
Like packing peanuts, these files are included in the ZIP but are not, as far as I have found,
particularly useful once the package is opened:

• LICENSE.txt: Standard boilerplate license (JPL employees produced this code, and JPL is
part of the California Institute of Technology)

• README.txt: This file just directs you to the doc/index.html file.
• bin/runapp.bat: A Windows-style batch file that demonstrates how to invoke an executable in

the bin directory for a (non-existent) sample file IngestLDDTool.xml. It will not run as is if you
try to execute it.

• bin/runapp/: This directory contains a variety of batch files that look like they should be able
to run LDDTool on some of the example files provided. They will not succeed in their current
location and configuration, but they provide some minimal guidance on command line
variations.

• Schemas/: This directory contains copies of the last few releases of schema files for the core
PDS4 namespace. I'm not sure why it's here; the tool seems to run fine if this directory is
expunged. Could be handy if you don't already have a schema tree but want to use a
schema-aware editor to create your LDDTool input file.

Install the Executable and Support Directories
Unless you are seriously hardcore, you will be running LDDTool by invoking a wrapper script (or
batch file). This script sets up some environment variables and then calls Java with the appropriate
options and arguments to invoke the DMDocument.jar file with the options and arguments passed on
from the wrapper script.

Note: The classes in the DMDocument.jar file read all the environment variables set by the wrapper
script/batch file, and also contain hard-coded references to the Data subdirectory in the installation
tree. So wherever you install LDDTool, you are going to need to preserve the delivery tree structure
for the bin/, lib/, and Data/ subdirectories - and the wrapper script must be physically located in
that bin/ directory.

Choosing an Installation Location
On linux-based multi-user systems, you can install LDDTool for general use by all users either by
installing into one of the standard locations (/usr/share, for example), or in shared disk space. If the
latter, users wanting to execute LDDTool will likely have to add the appropriate location to
their $PATH setting. Alternately, you can install it into your own ~/bin/ directory for personal use. Note
that if you haven't created or used a personal ~/bin/ directory before, you may have to add it to
your $PATH to use it.

In any event, on a linux-based system you will ultimately have to choose one of these options:

1. Add the lddtool-[version]/bin directory to your $PATH; which requires editing your shell
resource file; or

2. Create a link to lddtool-[version]/bin/lddtool in a directory already in your $PATH, which
requires an additional edit to the lddtool wrapper script; or

3. Type the full, absolute path to the lddtool script every time you want to run it.

On Windows systems, you can install LDDTool into the "Program Files\" directory for general
use (this may require admin privileges), or in your own directory space for personal use. You
will likely have to modify %PATH% setting information to make the lddtool.bat executable
visible to users without requiring a complete path specification to run the batch file. More on
that later.

What to Copy/Move
Create a directory in your chosen installation location to hold the LDDTool tree. You can name
this lddtool, or include a version number, or rename it anything convenient. The name of this
directory is not significant to the code.

Under this directory, copy over the entire contents of the lib/ and Data/ directories from the
installation package. You will also need to create a bin/ directory, into which you should copy either
the lddtool linux script or the lddtool.bat Windows batch file, as appropriate for your environment. For
linux users, you will likely also have to make the lddtool script executable.

At this point you may also want to copy over the contents of the doc/ directory, for easy reference. I
also copy the README.TXT and LICENSE.TXT files from the root of the install package into this
directory, just in case I want to find them again later.

Edit the Wrapper Script/Batch File
The lddtool script (linux) or lddtool.bat file (Windows) is used to run the tool. This file will need to be
edited to conform to the installation environment. Any simple text editor can do the job.

Windows Batch File lddtool.bat
You'll likely want or need to make a couple changes to this file. Lines beginning with '::' are
comments - feel free to add more.

The first executable line in the file is:
@echo off

which stops the shell from printing every executable line to your command window when you run the
batch file. Comment this line out if you are trying to trouble-shoot something.

Immediately after the "@echo off" line, you should probably add this line:
SETLOCAL

This makes sure that any variables that are set by this script do not permanently overwrite any
environment variables with the same name that might have already existed for other reasons.

Following the next set of comments you'll see the (uncommented) lines that check whether
the %JAVA_HOME% environment variable is already set, and if it isn't, sets it. See the Finding and
Setting JAVA_HOME page for detailed steps to check the variable and find the right value to insert
here if the variable is not already set.

The last executable line in the script before the :END statement looks like this:
"%JAVA_HOME%"\bin\java -jar "%DMDOC_JAR%" %*

Remove the quotes from around %JAVA_HOME%. If they were needed to set the value, then they
are already part of the string and the additional quotes will cause a syntax error.

Paths with embedded blanks and extra sets of quotes can cause failures, frequently with messages
about unexpected information or invalid paths. If you see that sort of message when you test the
batch file, comment out the @echo off line so you can see where the script is failing, and you may

https://pds.nasa.gov/datastandards/training/documents/Finding%20and%20Setting%20JAVA%20HOME.pdf
https://pds.nasa.gov/datastandards/training/documents/Finding%20and%20Setting%20JAVA%20HOME.pdf

have to add or remove quotes on that line (or an earlier line) to adjust for the actual paths in your
environment.

Linux lddtool script
If your $JAVA_HOME environment variable is not already set, you will need to edit the export
JAVA_HOME line to set it. See the Finding and Setting JAVA_HOME page for details.

Note: The lddtool wrapper script is written to be run in the Bourne shell, so use Bourne shell syntax
to set JAVA_HOME in the script, regardless of what your login shell is.

If you are planning to add lddtool to an existing bin/ directory (as opposed to adding a new element to
your $PATH to access the tool) you'll need to edit one additional line in the lddtool wrapper - the line
beginning export PARENT_DIR (line 34 in the current distribution). Replace the back ticks (`) and
everything inside them with the absolute path to the LDDTool installation directory (without ticks or
quotes).

Now make the lddtool script file executable, and you are ready to test it.

Testing
To make sure the batch file or script can properly invoke the tool, you can run it from its bin/ directory
home. At the command prompt (Windows or Linux) do:
lddtool -v

The response should look like this:
LDDTOOL version: 0.2.1.0

Yes, this version number here is different from the version number of the package. The version
number above corresponds to the version 7.0.1 release package.

Once you have had some experience with running LDDTool and tried out some of the other options
available, you may want to further modify the script or batch file to automatically include certain
options, provide a standard output file redirect, and otherwise customize tool behavior.

Install the Wrapper Script/Batch File
Assuming, of course, that you don't want to do all your dictionary work in the LDDTool bin/ directory,
the last step is making sure you can invoke lddtool from wherever you will be working. For Windows
users this will almost certainly mean adding a new directory to your %PATH% environment variable.
Linux users have the option of adding a link in a directory already in their command path to
the lddtool script wherever it lives.

You can, of course, always execute the script/batch file by using its full, absolute path on the
command line. For ease of use, though, most people prefer to have their executables available in
their path.

Setting Windows %PATH%
If you only want to add the lddtool.bat location to your path temporarily, say for testing, you can enter
something like this at the command prompt:

 C:>set PATH=%PATH%;C:\Users\LDDTool\bin

where C:\Users\LDDTool\bin should be replaced with whatever the full path is to your
LDDTool bin/ directory. This appends the path you provide to the current value of
the %PATH% variable. You will need to use double quotes around the path you are adding if it
contains embedded blanks.

https://pds.nasa.gov/datastandards/training/documents/Finding%20and%20Setting%20JAVA%20HOME.pdf

If you'd like to add the LDDTool path to your default %PATH% once and for all, you can follow the
instructions on this page for your particular version of Windows:

• How to set the path and environment variables in Windows, by ComputerHope.com.

Setting Linux-based $PATH
The method used for adding a directory to your current PATH varies based on the shell you use. The
Bourne shell requires an assignment followed by an export command to make the new path visible to
programs you run:

 % PATH=$PATH:/usr/share/LDDTool/bin
 % export PATH

or this shortcut should also work:

 % export PATH=$PATH:/usr/share/LDDTool/bin

where /usr/share/LDDTool/bin is replaced with the full path to the LDDTool installation
tree bin/ directory.

For C-shell and related shells, use a setenv command:

 % setenv PATH $PATH":/usr/share/LDDTool/bin"

or the set command:

 % set PATH=($PATH /usr/share/LDDTool/bin)

For either type of shell, you can do this at the command line before beginning your work
with LDDTool, or you can add the lines to your shell resource file so it's already there every time you
log on.

If you don't know what any of this means, it is time to seek out your friendly, neighborhood Linux
programmer and ask, or try Googling "Setting environment variables" for your particular operating
system.

Linux Alternative to Extending $PATH: Links
So far, at least, as long as the lddtool script is physically located in the LDDTool installation tree as
described previously, you can create a link to the script from some more convenient place so that
you don't have to modify your $PATH just to run lddtool. You'll need to have write permission to some
directory already in your path. You can do this in your own ~/bin/ directory, for example (assuming it's
already in your path).

To do this, simply create a link to the lddtool script from the directory already in your path. Say, for
example, that the LDDTool tree is in your home directory and is called LDDTool:

 % ls ~/LDDTool
 bin Data doc lib

Create a link to the ~/LDDTool/bin/lddtool file in the ~/bin/ directory thus:

 % cd ~/bin
 % ln ~/LDDtool/bin/lddtool

http://www.computerhope.com/issues/ch000549.htm

If you want to start using lddtool immediately in the same shell window, you will have to source your
shell resource file to force it to re-read your path contents. Apart from that rare
circumstance, lddtool should be in your path every time you start a new shell from now on.

A similar method can be employed (by users with sufficient privileges) to create a link in an existing
system bin/ directory for general use.

Mac Users Note
Mac users should be aware of a minor but possibly annoying detail when defining aliases. The Mac
version of Linux, while allowing mixed-case file names, does not consider case significant when
comparing file names. So if, for example, you decided to install LDDTool into ~/bin/LDDTool, and
then tried to create a link called "lddtool" to ~/bin/LDDtool/bin/lddtool in the same directory, you'd get
an error message telling you a file by that name already exists.

To get around this you can, of course, move the LDDTool tree; or you can give the link a different
name using the second argument to the ln command:

 % ln ~/bin/LDDTool/bin/lddtool makeldd

Now to invoke the lddtool script, you would use the makeldd alias, e.g.:

 % makeldd -lpM IngestLDDtool.xml

I haven't actually tested whether or not you can rename the LDDTool directory itself. If you do try that
and have anything to report, let me know...

Test the Installation
Once you think you've got the LDDTool executables in their correct locations, you should test the
installation and configuration. You can use the File:LDDTool 701 examples.zip for testing if you don't
have an input file of your own yet.

Aliveness Test
To test whether you can successfully invoke the executable, try getting the help listing. This
command:
lddtool -h

Should produce something like this:

Usage: lddtool -pl [OPTION]... FILE1 FILE2 ...
Parse a local data dictionary definition file and generate PDS4 data standard files.

Example: lddtool -pl inputFileName

Process control:
 -p, --PDS4 Set the context to PDS4
 -l, --LDD Process a local data dictionary input file
 -a, --attribute Write definitions for attribute elements.
 -c, --class Write definitions for class elements.
 -J, --JASON Write the master data dictionary to a JASON formatted file.

https://pds.nasa.gov/datastandards/training/documents/LDDTool_701_examples.zip

 -m, --merge Generate file to merge the local dictionary into the master dictionary
 -M, --Mission Indicates mission level governance (includes msn directory specification)
 -n, --nuance Write nuance property maps to LDD schema annotation in JASON
 -s, --sync Use local namespace + information model version as output file names.
 -1, --IM Spec Write the Information Model Specification with LDD.
 -v, --version Returns the LDDTool version number
 -h, --help Print this message

Input control:
 FILEn provides the file name of an input file. The file name extension .xml is assumed.
 If there are more than one file, the first files are considered references
 for the last file. The last file is considered the primary local data dictionary.

Output control:
 FILE is used to provide the file name for the output files. The file name extensions are distinct.
 .xsd -- XML Schema file
 .sch -- schematron file
 .xml -- label file
 .csv -- data dictionary information in csv formatted file.
 .JSON -- dump of model in JSON format.
 .txt -- process report in text format
 .pont -- ontology file for merge

Note: There is more wrong than right in the "Process Information" section displayed. Ignore it and
use the information provided by the Running LDDTool and Verifying the Output page instead.

Alternately, you can view the version number for the executable:
lddtool -v

which should produce something like this:

LDDTOOL Version: 0.2.1.3

Anything else indicates a configuration error of some sort. Re-check your paths and script/batch file
editing and try again. If you can't resolve the problem yourself, contact your local PDS consultant for
additional assistance.

Running LDDTool on the Example Files
If you haven't already, download the LDDTool 1900 examples.zip package, and unzip it into a
working directory. This package contains some example Ingest_LDD input files that demonstrate
dictionary creation techniques. The package contains output files from running lddtool to generate
the included schemas - you probably want to stow those somewhere to compare them to what you
are about to create.

The input dictionary files are called "IngestLDD_Example_Attributes.xml" and
"IngestLDD_Example_Classes.xml". To invoke lddtool to duplicate the output files included in the
package, do:
lddtool -lpM IngestLDD_Example_Attributes.xml > IngestLDD_Attributes.out

https://pds.nasa.gov/datastandards/training/documents/Running%20LDDTool%20and%20Verifying%20the%20Output.pdf
https://pds.nasa.gov/datastandards/training/documents/LDDTool_1900_examples.zip

and/or:
lddtool -lpM IngestLDD_Example_Classes.xml > IngestLDD_Classes.out

The commands above redirect the information that would normally scroll by on your screen to
the .out file so you can examine it at your leisure and compare it to the version provided in the
package. It is also where errors detected by lddtool are reported.

Expected Results
The example lddtool command above will generate a total of five output files in addition to
the .out listing file. The files will all have the same lddtool-generted names but different extensions.
Here are those extensions, in approximate order of usefulness:

• .xsd: This is the XML Schema file that you will reference in your labels when you want to use
classes from this dictionary.

• .sch: This is the Schematron file that you will also reference in your labels when you want to
use classes from this dictionary.

• .csv: This is a CSV-formatted summary of the dictionary contents. You might find this a
useful way to review the results if you are averse to reading schema and don't have labels
already written to exercise the newly-produced schemas. You might also find this to be a
useful file for passing to reviewers who want to see class and attribute definitions - though
maybe with a little editing first.

• .xml: This is a label for the XML Schema and Schematron files; probably only useful as a
template. We strongly recommend that rather than creating a label from scratch each time,
you modify an existing label at reasonable intervals in order to maintain
a <Modification_History> within the label that accurately reflects the development history of
the dictionary (as any other product label should for an archival product). At least, the
schema label should be modified to identify the unique origin and application of the dictionary
files it describes.

Checking for Success
If you compare the output files from the above commands to what came in the example zip file, you
should see differences in date stamps and local paths, but otherwise nothing else. Make sure your
option string is -lpM (lowercase letter "ell", uppercase letter "em"), or you will get a slightly different
set of output files or a different namespace definition in the output schemas.

If you run the tool on your own input file, the first thing to check is the program output listing, which
will scroll past on your screen if you don't redirect it to a file. The last line of that listing should look
like this:

 >>info - LDDTOOL Exit

This indicates a measure of success. Depending on how complex your input file is, there will be a
few dozen to a few hundred "INFO" lines containing messages about various override conditions.
This is normal. It should not contain any "ERROR" lines or lines beginning with ">>error". These
indicate some sort of failure. There will likely also be two "WARNING" lines that look like this:

 WARNING Header: - New steward has been specified:sbn
 WARNING Header: - New namespace id has been specified:ex

unless you are updating a dictionary that is already known to LDDTool. Other "WARNING"
statements, however, are problematic and should be investigated.

Once you've verified expected output, you should be good to go.

Common Failures
The common failures encountered at this point come from system references not resolving. Here are
the most likely suspects:

Cannot find DMDocument jar file in [some directory]
This error is reported back to the command line by the lddtool wrapper, which checks for the
existence of the DMDocument.jar file before invoking java on it. If you haven't previously
set PARENT_DIR in the wrapper to point to the LDDTool installation directory, do so (in some
environments this may be required even if you are using the default configuration). If you have
already modified PARENT_DIR, search it for typos. The PARENT_DIR directory must contain
a lib/ subdirectory, which in turn must contain the DMDocument.jar file.
You'll also get this message if there is a typo in the lib/ subdirectory name or DMDocument.jar name
(case counts).

>>error - Required data file was not found: [some path to an XML file]
This will show up as the last line in your listing if you forgot to include the Data/ subdirectory of
the LDDTool distribution in your installation LDDTool directory tree. Spelling and case count, so if you
are on a linux-based system and accidentally changed "Data" to "data", for example, you'll get this
message.

/bin/java: No such file or directory (This is the linux version of this error)

Messages like this are reported to the command line and indicate that the JAVA_HOME setting either
failed or points to the wrong place. If there's a typo in the JAVA_HOME setting, you might also see
characters before "/bin/java" indicating what the script thinks JAVA_HOME was set to.
The JAVA_HOME directory must contain a bin/ subdirectory, which in turn must contain
the java executable.

[usage info dump]
If you get a dump of lddtool usage information when you run the test command on the example file,
look at the top - there's probably an error waiting for you. Make sure you spelled the input file name
correctly and included the required "-lp" option set.

